Graphs with chromatic number close to maximum degree

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs with chromatic number close to maximum degree

Let G be a color-critical graph with χ(G) ≥ Δ(G) = 2t + 1 ≥ 5 such that the subgraph of G induced by the vertices of degree 2t+1 has clique number at most t−1. We prove that then either t ≥ 3 and G = K2t+2 or t = 2 and G ∈ {K6, O5}, where O5 is a special graph with χ(O5) = 5 and |O5| = 9. This result for t ≥ 3 improves a case of a theorem by Rabern [9] and for t = 2 answers a question raised by...

متن کامل

Distance graphs with maximum chromatic number

Let D be a finite set of integers. The distance graph G(D) has the set of integers as vertices and two vertices at distance d ∈ D are adjacent in G(D). A conjecture of Xuding Zhu states that if the chromatic number of G(D) achieves its maximum value |D| + 1 then the graph has a clique of order |D|. We prove that the chromatic number of a distance graph with D = {a, b, c, d} is five if and only ...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The chromatic index of graphs with large maximum degree

By Vizing’s theorem, the chromatic index x’(G) of a simple graph G satisfies d(G) Li 1 V(G)1 J + ir, where r is the number of vertices of maximum degree. A graph G is critical if G is Class 2 and x’(H) < x’(G) for all prop...

متن کامل

Edge-face chromatic number of plane graphs with high maximum degree

The edge-face chromatic number Xe / (G) of a plane graph G is the smallest number of colors assigned to the edges and faces of G so that any two adjacent or incident elements have different colors. Borodin(1994) proved that L1( G) ~ Xe/ (G) :::; L1( G) + 1 for each plane graph G with ~(G) ~ 10 and the bounds are sharp. The main result of this paper is to give a sufficient and necessary conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2012

ISSN: 0012-365X

DOI: 10.1016/j.disc.2011.12.014